Minding metals: tailoring multifunctional chelating agents for neurodegenerative disease.

نویسندگان

  • Lissette R Perez
  • Katherine J Franz
چکیده

Neurodegenerative diseases like Alzheimer's and Parkinson's disease are associated with elevated levels of iron, copper, and zinc and consequentially high levels of oxidative stress. Given the multifactorial nature of these diseases, it is becoming evident that the next generation of therapies must have multiple functions to combat multiple mechanisms of disease progression. Metal-chelating agents provide one such function as an intervention for ameliorating metal-associated damage in degenerative diseases. Targeting chelators to adjust localized metal imbalances in the brain, however, presents significant challenges. In this perspective, we focus on some noteworthy advances in the area of multifunctional metal chelators as potential therapeutic agents for neurodegenerative diseases. In addition to metal chelating ability, these agents also contain features designed to improve their uptake across the blood-brain barrier, increase their selectivity for metals in damage-prone environments, increase antioxidant capabilities, lower Abeta peptide aggregation, or inhibit disease-associated enzymes such as monoamine oxidase and acetylcholinesterase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and evaluation of paeonol derivatives as potential multifunctional agents for the treatment of Alzheimer's disease.

Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder characterized by memory loss, language impairment, personality changes and intellectual decline. Taking into account the key pathological features of AD, such as low levels of acetylcholine, beta-amyloid (Aβ) aggregation, oxidative stress and dyshomeostasis of biometals, a new series of paeonol derivatives 5a-5d merging ...

متن کامل

Iron chelation as a potential therapy for neurodegenerative disease.

Neurodegenerative disorders include a variety of pathological conditions, which share similar critical metabolic processes such as protein aggregation and oxidative stress, both of which are associated with the involvement of metal ions. Chelation therapy could provide a valuable therapeutic approach to such disease states, since metals, particularly iron, are realistic pharmacological targets ...

متن کامل

Rationale for the Successful Management of EDTA Chelation Therapy in Human Burden by Toxic Metals

Exposure to environmental and occupational toxicants is responsible for adverse effects on human health. Chelation therapy is the only procedure able to remove toxic metals from human organs and tissue, aiming to treat damage related to acute and/or chronic intoxication. The present review focuses on the most recent evidence of the successful use of the chelating agent ethylenediaminetetraaceti...

متن کامل

Transition metal ions significantly decrease phospholipase C activity degrading phosphatidylinositol-4,5-bisphosphate in the brain cortex.

Highly reactive transition metals, such as copper and iron play an obligatory role in generating of reactive oxygen species (ROS). Many neurodegenerative diseases including Alzheimer's disease (AD) and Parkinson's disease (PD) show increased accumulation of these metals. Phosphoinositide metabolism is altered in neurodegenerative diseases. In the present study, we examined the effect of CuSO(4)...

متن کامل

Metal ions, Alzheimer's disease and chelation therapy.

In the last few years, various studies have been providing evidence that metal ions are critically involved in the pathogenesis of major neurological diseases (Alzheimer, Parkinson). Metal ion chelators have been suggested as potential therapies for diseases involving metal ion imbalance. Neurodegeneration is an excellent target for exploiting the metal chelator approach to therapeutics. In con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Dalton transactions

دوره 39 9  شماره 

صفحات  -

تاریخ انتشار 2010